The five-gene-network data analysis with local causal discovery algorithm using causal Bayesian networks.

نویسندگان

  • Changwon Yoo
  • Erik M Brilz
چکیده

Using microarray experiments, we can model causal relationships of genes measured through mRNA expression levels. To this end, it is desirable to compare experiments of the system under complete interventions of some genes, such as by knock out of some genes, with experiments of the system under no interventions. However, it is expensive and difficult to conduct wet lab experiments of complete interventions of genes in a biological system. Thus, it will be helpful if we can discover promising causal relationships among genes with no interventions or incomplete interventions, such as by applying a treatment that has unknown effects to modeled genes, in order to identify promising genes to perturb in the system that can later be verified in wet laboratories. In this paper we use causal Bayesian networks to implement a causal discovery algorithm-the equivalence local implicit latent variable scoring method (EquLIM)-that identifies promising causal relationships even with a small dataset generated from no or incomplete interventions. We then apply EquLIM to analyze the five-gene-network data and compare EquLIM's predictions with true causal pairwise relationships between the genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis

MOTIVATION Reverse engineering gene regulatory networks, especially large size networks from time series gene expression data, remain a challenge to the systems biology community. In this article, a new hybrid algorithm integrating ordinary differential equation models with dynamic Bayesian network analysis, called Differential Equation-based Local Dynamic Bayesian Network (DELDBN), was propose...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A Simulation Study of Three Related Causal Data Mining Algorithms

In all scienti c domains causality plays a signi cant role. This study focused on evaluating and re ning e cient algorithms to learn causal relationships from observational data. Evaluation of learned causal output is di cult, due to lack of a gold standard in real-world domains. Therefore, we used simulated data from a known causal network in a medical domain|the Alarm network. For causal disc...

متن کامل

Discovery of Causal Models that Contain Latent Variables Through Bayesian Scoring of Independence Constraints

Discovering causal structure from observational data in the presence of latent variables remains an active research area. Constraint-based causal discovery algorithms are relatively efficient at discovering such causal models from data using independence tests. Typically, however, they derive and output only one such model. In contrast, Bayesian methods can generate and probabilistically score ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1158  شماره 

صفحات  -

تاریخ انتشار 2009